Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell Genom ; 3(10): 100404, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37868037

RESUMEN

Genome-wide association studies (GWASs) have successfully identified 145 genomic regions that contribute to schizophrenia risk, but linkage disequilibrium makes it challenging to discern causal variants. We performed a massively parallel reporter assay (MPRA) on 5,173 fine-mapped schizophrenia GWAS variants in primary human neural progenitors and identified 439 variants with allelic regulatory effects (MPRA-positive variants). Transcription factor binding had modest predictive power, while fine-map posterior probability, enhancer overlap, and evolutionary conservation failed to predict MPRA-positive variants. Furthermore, 64% of MPRA-positive variants did not exhibit expressive quantitative trait loci signature, suggesting that MPRA could identify yet unexplored variants with regulatory potentials. To predict the combinatorial effect of MPRA-positive variants on gene regulation, we propose an accessibility-by-contact model that combines MPRA-measured allelic activity with neuronal chromatin architecture.

2.
Cell Biosci ; 13(1): 132, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37480151

RESUMEN

BACKGROUND: Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-ß levels and EMT signaling. Given that many drugs targeting TGF-ß have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-ß/EMT axis. RESULTS: Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-ß and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-ß levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-ß/SMAD2&3) and non-canonical (TGF-ß/PI3K/AKT, TGF-ß/RAS/RAF/MEK/ERK, and TGF-ß/WNT/ß-catenin) TGF-ß signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, ß-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment. CONCLUSIONS: Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-ß and inhibiting EMT in a diverse range of cancers.

3.
Nat Genet ; 55(7): 1149-1163, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37386251

RESUMEN

Hereditary congenital facial paresis type 1 (HCFP1) is an autosomal dominant disorder of absent or limited facial movement that maps to chromosome 3q21-q22 and is hypothesized to result from facial branchial motor neuron (FBMN) maldevelopment. In the present study, we report that HCFP1 results from heterozygous duplications within a neuron-specific GATA2 regulatory region that includes two enhancers and one silencer, and from noncoding single-nucleotide variants (SNVs) within the silencer. Some SNVs impair binding of NR2F1 to the silencer in vitro and in vivo and attenuate in vivo enhancer reporter expression in FBMNs. Gata2 and its effector Gata3 are essential for inner-ear efferent neuron (IEE) but not FBMN development. A humanized HCFP1 mouse model extends Gata2 expression, favors the formation of IEEs over FBMNs and is rescued by conditional loss of Gata3. These findings highlight the importance of temporal gene regulation in development and of noncoding variation in rare mendelian disease.


Asunto(s)
Parálisis Facial , Animales , Ratones , Parálisis Facial/genética , Parálisis Facial/congénito , Parálisis Facial/metabolismo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Neuronas Motoras/metabolismo , Neurogénesis , Neuronas Eferentes
4.
Front Mol Biosci ; 10: 1148501, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325471

RESUMEN

Background: Cystic fibrosis (CF) is caused by a wide spectrum of mutations in the CF transmembrane conductance regulator (CFTR) gene, with some leading to non-classical clinical presentations. We present an integrated in vivo, in silico and in vitro investigation of an individual with CF carrying the rare Q1291H-CFTR allele and the common F508del allele. At age 56 years, the participant had obstructive lung disease and bronchiectasis, qualifying for Elexacaftor/Tezacaftor/Ivacaftor (ETI) CFTR modulator treatment due to their F508del allele. Q1291H CFTR incurs a splicing defect, producing both a normally spliced but mutant mRNA isoform and a misspliced isoform with a premature termination codon, causing nonsense mediated decay. The effectiveness of ETI in restoring Q1291H-CFTR is largely unknown. Methods: We collected clinical endpoint measurements, including forced expiratory volume in 1 s percent predicted (FEV1pp) and body mass index (BMI), and examined medical history. In silico simulations of the Q1291H-CFTR were compared to Q1291R, G551D, and wild-type (WT)-CFTR. We quantified relative Q1291H CFTR mRNA isoform abundance in patient-derived nasal epithelial cells. Differentiated pseudostratified airway epithelial cell models at air liquid interface were created and ETI treatment impact on CFTR was assessed by electrophysiology assays and Western blot. Results: The participant ceased ETI treatment after 3 months due to adverse events and no improvement in FEV1pp or BMI. In silico simulations of Q1291H-CFTR identified impairment of ATP binding similar to known gating mutants Q1291R and G551D-CFTR. Q1291H and F508del mRNA transcripts composed 32.91% and 67.09% of total mRNA respectively, indicating 50.94% of Q1291H mRNA was misspliced and degraded. Mature Q1291H-CFTR protein expression was reduced (3.18% ± 0.60% of WT/WT) and remained unchanged with ETI. Baseline CFTR activity was minimal (3.45 ± 0.25 µA/cm2) and not enhanced with ETI (5.73 ± 0.48 µA/cm2), aligning with the individual's clinical evaluation as a non-responder to ETI. Conclusion: The combination of in silico simulations and in vitro theratyping in patient-derived cell models can effectively assess CFTR modulator efficacy for individuals with non-classical CF manifestations or rare CFTR mutations, guiding personalized treatment strategies and optimizing clinical outcomes.

5.
Mol Cancer ; 22(1): 88, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37246217

RESUMEN

BACKGROUND: Neuroblastoma is the most common solid tumor in infants accounting for approximately 15% of all cancer-related deaths. Over 50% of high-risk neuroblastoma relapse, emphasizing the need of novel drug targets and therapeutic strategies. In neuroblastoma, chromosomal gains at chromosome 17q, including IGF2BP1, and MYCN amplification at chromosome 2p are associated with adverse outcome. Recent, pre-clinical evidence indicates the feasibility of direct and indirect targeting of IGF2BP1 and MYCN in cancer treatment. METHODS: Candidate oncogenes on 17q were identified by profiling the transcriptomic/genomic landscape of 100 human neuroblastoma samples and public gene essentiality data. Molecular mechanisms and gene expression profiles underlying the oncogenic and therapeutic target potential of the 17q oncogene IGF2BP1 and its cross-talk with MYCN were characterized and validated in human neuroblastoma cells, xenografts and PDX as well as novel IGF2BP1/MYCN transgene mouse models. RESULTS: We reveal a novel, druggable feedforward loop of IGF2BP1 (17q) and MYCN (2p) in high-risk neuroblastoma. This promotes 2p/17q chromosomal gains and unleashes an oncogene storm resulting in fostered expression of 17q oncogenes like BIRC5 (survivin). Conditional, sympatho-adrenal transgene expression of IGF2BP1 induces neuroblastoma at a 100% incidence. IGF2BP1-driven malignancies are reminiscent to human high-risk neuroblastoma, including 2p/17q-syntenic chromosomal gains and upregulation of Mycn, Birc5, as well as key neuroblastoma circuit factors like Phox2b. Co-expression of IGF2BP1/MYCN reduces disease latency and survival probability by fostering oncogene expression. Combined inhibition of IGF2BP1 by BTYNB, MYCN by BRD inhibitors or BIRC5 by YM-155 is beneficial in vitro and, for BTYNB, also. CONCLUSION: We reveal a novel, druggable neuroblastoma oncogene circuit settling on strong, transcriptional/post-transcriptional synergy of MYCN and IGF2BP1. MYCN/IGF2BP1 feedforward regulation promotes an oncogene storm harboring high therapeutic potential for combined, targeted inhibition of IGF2BP1, MYCN expression and MYCN/IGF2BP1-effectors like BIRC5.


Asunto(s)
Neuroblastoma , Animales , Humanos , Lactante , Ratones , Línea Celular Tumoral , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes myc , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Recurrencia Local de Neoplasia/genética , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo
6.
Invest Ophthalmol Vis Sci ; 63(10): 4, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36083589

RESUMEN

Purpose: To determine if extraocular muscles (EOMs) from mice with nystagmus show abnormalities in myofiber composition and innervation, as seen in EOMs from human nystagmus patients, and to determine when in development those changes occur. Methods: Balb/c albino mice were crossed to pigmented mice to generate heterozygous mice, which were mated to create experimental litters containing albinos and wild-type controls. Orbits were harvested from adult animals (12 weeks old); on postnatal day (P)0, P10, P14, and P21; and from 6-week-old animals. EOM sections were collected from the intraorbital portion of the muscles. Sections were immunostained for slow and fast myosin and for neuromuscular junctions (NMJs). The proportion of each myofiber subtype and the density and size of NMJs were quantified. Initial innervation patterns were assessed using whole-mount immunostaining of embryonic day (E)13.5 embryos expressing IslMN:GFP. Results: Adult albino EOMs display an increased proportion of slow myofibers, larger slow myofibers, and a decreased density of NMJs-similar to human nystagmus patients. The percentage of NMJs on slow myofibers is also lower in albino animals. The initial innervation pattern of the incoming ocular motor neurons is normal in E13.5 albino embryos. Differences in the proportion of slow and fast myofiber subtypes are present as early as P14, and a lower percentage of NMJs on slow myofibers is present by P21. There is a lower density of NMJs on albino EOMs as early as P10, prior to eye opening. Conclusions: Changes in NMJ development observed before eye opening indicate that nystagmus is not solely secondary to poor vision.


Asunto(s)
Nistagmo Patológico , Músculos Oculomotores , Adulto , Animales , Modelos Animales de Enfermedad , Ojo , Humanos , Ratones , Neuronas Motoras , Unión Neuromuscular , Músculos Oculomotores/inervación
7.
J Neurodev Disord ; 14(1): 50, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085003

RESUMEN

A growing number of variants associated with risk for neurodevelopmental disorders have been identified by genome-wide association and whole genome sequencing studies. As common risk variants often fall within large haplotype blocks covering long stretches of the noncoding genome, the causal variants within an associated locus are often unknown. Similarly, the effect of rare noncoding risk variants identified by whole genome sequencing on molecular traits is seldom known without functional assays. A massively parallel reporter assay (MPRA) is an assay that can functionally validate thousands of regulatory elements simultaneously using high-throughput sequencing and barcode technology. MPRA has been adapted to various experimental designs that measure gene regulatory effects of genetic variants within cis- and trans-regulatory elements as well as posttranscriptional processes. This review discusses different MPRA designs that have been or could be used in the future to experimentally validate genetic variants associated with neurodevelopmental disorders. Though MPRA has limitations such as it does not model genomic context, this assay can help narrow down the underlying genetic causes of neurodevelopmental disorders by screening thousands of sequences in one experiment. We conclude by describing future directions of this technique such as applications of MPRA for gene-by-environment interactions and pharmacogenetics.


Asunto(s)
Estudio de Asociación del Genoma Completo , Secuencias Reguladoras de Ácidos Nucleicos , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos
8.
Dev Biol ; 490: 126-133, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35944701

RESUMEN

Heterozygous loss of function mutations in TWIST1 cause Saethre-Chotzen syndrome, which is characterized by craniosynostosis, facial asymmetry, ptosis, strabismus, and distinctive ear appearance. Individuals with syndromic craniosynostosis have high rates of strabismus and ptosis, but the underlying pathology is unknown. Some individuals with syndromic craniosynostosis have been noted to have absence of individual extraocular muscles or abnormal insertions of the extraocular muscles on the globe. Using conditional knock-out alleles for Twist1 in cranial mesenchyme, we test the hypothesis that Twist1 is required for extraocular muscle organization and position, attachment to the globe, and/or innervation by the cranial nerves. We examined the extraocular muscles in conditional Twist1 knock-out animals using Twist2-cre and Pdgfrb-cre drivers. Both are expressed in cranial mesoderm and neural crest. Conditional inactivation of Twist1 using these drivers leads to disorganized extraocular muscles that cannot be reliably identified as specific muscles. Tendons do not form normally at the insertion and origin of these dysplastic muscles. Knock-out of Twist1 expression in tendon precursors, using scleraxis-cre, however, does not alter EOM organization. Furthermore, developing motor neurons, which do not express Twist1, display abnormal axonal trajectories in the orbit in the presence of dysplastic extraocular muscles. Strabismus in individuals with TWIST1 mutations may therefore be caused by abnormalities in extraocular muscle development and secondary abnormalities in innervation and tendon formation.


Asunto(s)
Acrocefalosindactilia , Craneosinostosis , Estrabismo , Proteína 1 Relacionada con Twist , Acrocefalosindactilia/complicaciones , Acrocefalosindactilia/genética , Animales , Craneosinostosis/genética , Ratones , Cresta Neural , Músculos Oculomotores , Estrabismo/complicaciones , Proteína 1 Relacionada con Twist/genética
10.
J Neurosci ; 41(45): 9466-9481, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34642214

RESUMEN

TSNARE1, which encodes the protein tSNARE1, is a high-confidence gene candidate for schizophrenia risk, but nothing is known about its cellular or physiological function. We identified the major gene products of TSNARE1 and their cytoplasmic localization and function in endosomal trafficking in cortical neurons. We validated three primary isoforms of TSNARE1 expressed in human brain, all of which encode a syntaxin-like Qa SNARE domain. RNA-sequencing data from adult and fetal human brain suggested that the majority of tSNARE1 lacks a transmembrane domain that is thought to be necessary for membrane fusion. Biochemical data demonstrate that tSNARE1 can compete with Stx12 for incorporation into an endosomal SNARE complex, supporting its possible role as an inhibitory SNARE. Live-cell imaging in cortical neurons from mice of both sexes demonstrated that brain tSNARE1 isoforms localized to the endosomal network. The most abundant brain isoform, tSNARE1c, localized most frequently to Rab7+ late endosomes, and endogenous tSNARE1 displayed a similar localization in human neural progenitor cells and neuroblastoma cells. In mature rat neurons from both sexes, tSNARE1 localized to the dendritic shaft and dendritic spines, supporting a role for tSNARE1 at the postsynapse. Expression of either tSNARE1b or tSNARE1c, which differ only in their inclusion or exclusion of an Myb-like domain, delayed the trafficking of the dendritic endosomal cargo Nsg1 into late endosomal and lysosomal compartments. These data suggest that tSNARE1 regulates endosomal trafficking in cortical neurons, likely by negatively regulating early endosomal to late endosomal trafficking.SIGNIFICANCE STATEMENT Schizophrenia is a severe and polygenic neuropsychiatric disorder. Understanding the functions of high-confidence candidate genes is critical toward understanding how their dysfunction contributes to schizophrenia pathogenesis. TSNARE1 is one of the high-confidence candidate genes for schizophrenia risk, yet nothing was known about its cellular or physiological function. Here we describe the major isoforms of TSNARE1 and their cytoplasmic localization and function in the endosomal network in cortical neurons. Our results are consistent with the hypothesis that the majority of brain tSNARE1 acts as a negative regulator to endolysosomal trafficking.


Asunto(s)
Corteza Cerebral/metabolismo , Endosomas/metabolismo , Neuronas/metabolismo , Proteínas SNARE/metabolismo , Esquizofrenia/metabolismo , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Isoformas de Proteínas/metabolismo , Transporte de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley
11.
Cancer Res ; 81(13): 3431-3440, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34228629

RESUMEN

RNA N6 -methyladenosine (m6A) modification occurs in approximately 25% of mRNAs at the transcriptome-wide level. RNA m6A is regulated by the RNA m6A methyltransferases methyltransferase-like 3 (METTL3), METTL14, and METTL16 (writers), demethylases FTO and ALKBH5 (erasers), and binding proteins YTHDC1-2, YTHDF1-3, IGF2BP1-3, and SND1 (readers). These RNA m6A modification proteins are frequently upregulated or downregulated in human cancer tissues and are often associated with poor patient prognosis. By modulating pre-mRNA splicing, mRNA nuclear export, decay, stability, and translation of oncogenic and tumor suppressive transcripts, RNA m6A modification proteins regulate cancer cell proliferation, survival, migration, invasion, tumor initiation, progression, metastasis, and sensitivity to anticancer therapies. Importantly, small-molecule activators of METTL3, as well as inhibitors of METTL3, FTO, ALKBH5, and IGF2BP1 have recently been identified and have shown considerable anticancer effects when administered alone or in combination with other anticancer agents, both in vitro and in mouse models of human cancers. Future compound screening and design of more potent and selective RNA m6A modification protein inhibitors and activators are expected to provide novel anticancer agents, appropriate for clinical trials in patients with cancer tissues harboring aberrant RNA m6A modification protein expression or RNA m6A modification protein-induced resistance to cancer therapy.


Asunto(s)
Adenosina/análogos & derivados , Resistencia a Antineoplásicos , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Neoplasias/patología , ARN/química , Adenosina/química , Animales , Desmetilación , Humanos , Metilación , Neoplasias/tratamiento farmacológico , Neoplasias/genética
12.
Front Oncol ; 11: 647737, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026620

RESUMEN

MYCN gene amplification and upregulated expression are major hallmarks in the progression of high-risk neuroblastoma. MYCN expression and function in modulating gene synthesis in neuroblastoma is controlled at virtually every level, including poorly understood regulation at the post-transcriptional level. MYCN modulates the expression of various microRNAs including the miR-17-92 cluster. MYCN mRNA expression itself is subjected to the control by miRNAs, most prominently the miR-17-92 cluster that balances MYCN expression by feed-back regulation. This homeostasis seems disturbed in neuroblastoma where MYCN upregulation coincides with severely increased expression of the miR-17-92 cluster. In the presented study, we applied high-throughput next generation sequencing to unravel the miRNome in a cohort of 97 neuroblastomas, representing all clinical stages. Aiming to reveal the MYCN-dependent miRNome, we evaluate miRNA expression in MYCN-amplified as well as none amplified tumor samples. In correlation with survival data analysis of differentially expressed miRNAs, we present various putative oncogenic as well as tumor suppressive miRNAs in neuroblastoma. Using microRNA trapping by RNA affinity purification, we provide a comprehensive view of MYCN-regulatory miRNAs in neuroblastoma-derived cells, confirming a pivotal role of the miR-17-92 cluster and moderate association by the let-7 miRNA family. Attempting to decipher how MYCN expression escapes elevated expression of inhibitory miRNAs, we present evidence that RNA-binding proteins like the IGF2 mRNA binding protein 1 reduce miRNA-directed downregulation of MYCN in neuroblastoma. Our findings emphasize the potency of post-transcriptional regulation of MYCN in neuroblastoma and unravel new avenues to pursue inhibition of this potent oncogene.

13.
Biomater Res ; 25(1): 7, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33789768

RESUMEN

BACKGROUND: Understanding the regional vascular delivery of particles to tumour sites is a prerequisite for developing new diagnostic and therapeutic composites for treatment of oncology patients. We describe a novel imageable 67Ga-radiolabelled polymer composite that is biocompatible in an animal tumour model and can be used for preclinical imaging investigations of the transit of different sized particles through arterial networks of normal and tumour-bearing organs. RESULTS: Radiolabelling of polymer microspheres with 67Ga was achieved using a simple mix and wash method, with tannic acid as an immobilising agent. Final in vitro binding yields after autoclaving averaged 94.7%. In vivo stability of the composite was demonstrated in New Zealand white rabbits by intravenous administration, and intrahepatic artery instillations were made in normal and VX2 tumour implanted rabbit livers. Stability of radiolabel was sufficient for rabbit lung and liver imaging over at least 3 hours and 1 hour respectively, with lung retention of radiolabel over 91%, and retention in both normal and VX2 implanted livers of over 95%. SPECT-CT imaging of anaesthetised animals and planar imaging of excised livers showed visible accumulation of radiolabel in tumours. Importantly, microsphere administration and complete liver dispersal was more easily achieved with 8 µm diameter MS than with 30 µm MS, and the smaller microspheres provided more distinct and localised tumour imaging. CONCLUSION: This method of producing 67Ga-radiolabelled polymer microspheres is suitable for SPECT-CT imaging of the regional vascular delivery of microspheres to tumour sites in animal models. Sharper distinction of model tumours from normal liver was obtained with smaller MS, and tumour resolution may be further improved by the use of 68Ga instead of 67Ga, to enable PET imaging.

14.
Invest Ophthalmol Vis Sci ; 61(10): 22, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32780866

RESUMEN

Purpose: To determine whether rare copy number variants (CNVs) increase risk for comitant esotropia. Methods: CNVs were identified in 1614 Caucasian individuals with comitant esotropia and 3922 Caucasian controls from Illumina SNP genotyping using two Hidden Markov model (HMM) algorithms, PennCNV and QuantiSNP, which call CNVs based on logR ratio and B allele frequency. Deletions and duplications greater than 10 kb were included. Common CNVs were excluded. Association testing was performed with 1 million permutations in PLINK. Significant CNVs were confirmed with digital droplet polymerase chain reaction (ddPCR). Whole genome sequencing was performed to determine insertion location and breakpoints. Results: Esotropia patients have similar rates and proportions of CNVs compared with controls but greater total length and average size of both deletions and duplications. Three recurrent rare duplications significantly (P = 1 × 10-6) increase the risk of esotropia: chromosome 2p11.2 (hg19, 2:87428677-87965359), spanning one long noncoding RNA (lncRNA) and two microRNAs (OR 14.16; 95% confidence interval [CI] 5.4-38.1); chromosome 4p15.2 (hg19, 4:25554332-25577184), spanning one lncRNA (OR 11.1; 95% CI 4.6-25.2); chromosome 10q11.22 (hg19, 10:47049547-47703870) spanning seven protein-coding genes, one lncRNA, and four pseudogenes (OR 8.96; 95% CI 5.4-14.9). Overall, 114 cases (7%) and only 28 controls (0.7%) had one of the three rare duplications. No case nor control had more than one of these three duplications. Conclusions: Rare CNVs are a source of genetic variation that contribute to the genetic risk for comitant esotropia, which is likely polygenic. Future research into the functional consequences of these recurrent duplications may shed light on the pathophysiology of esotropia.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Esotropía/genética , Predisposición Genética a la Enfermedad/genética , Estudios de Casos y Controles , Femenino , Duplicación de Gen/genética , Frecuencia de los Genes/genética , Técnicas de Genotipaje , Humanos , Lactante , Masculino , Cadenas de Markov , Reacción en Cadena de la Polimerasa , Factores de Riesgo
15.
Int J Mol Sci ; 21(14)2020 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-32707690

RESUMEN

Neuroblastoma is a common childhood cancer with almost a third of those affected still dying, thus new therapeutic strategies need to be explored. Current experimental therapies focus mostly on inhibiting oncogenic transcription factor signalling. Although LIN28B, DICER and other RNA-binding proteins (RBPs) have reported roles in neuroblastoma development and patient outcome, the role of RBPs in neuroblastoma is relatively unstudied. In order to elucidate novel RBPs involved in MYCN-amplified and other high-risk neuroblastoma subtypes, we performed differential mRNA expression analysis of RBPs in a large primary tumour cohort (n = 498). Additionally, we found via Kaplan-Meier scanning analysis that 685 of the 1483 tested RBPs have prognostic value in neuroblastoma. For the top putative oncogenic candidates, we analysed their expression in neuroblastoma cell lines, as well as summarised their characteristics and existence of chemical inhibitors. Moreover, to help explain their association with neuroblastoma subtypes, we reviewed candidate RBPs' potential as biomarkers, and their mechanistic roles in neuronal and cancer contexts. We found several highly significant RBPs including RPL22L1, RNASEH2A, PTRH2, MRPL11 and AFF2, which remain uncharacterised in neuroblastoma. Although not all RBPs appear suitable for drug design, or carry prognostic significance, we show that several RBPs have strong rationale for inhibition and mechanistic studies, representing an alternative, but nonetheless promising therapeutic strategy in neuroblastoma treatment.


Asunto(s)
Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , Niño , Estudios de Cohortes , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Oncogenes , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Factores de Riesgo
16.
MMWR Morb Mortal Wkly Rep ; 69(23): 693-698, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32525855

RESUMEN

Pneumoconioses are preventable occupational lung diseases caused by inhaling dust particles such as coal dust or different types of mineral dusts (1). To assess recent trends in deaths associated with pneumoconiosis, CDC analyzed multiple cause-of-death data*,† for decedents aged ≥15 years for the years 1999-2018, and industry and occupation data collected from 26 states§ for the years 1999, 2003, 2004, and 2007-2013. During 1999-2018, pneumoconiosis deaths decreased by 40.4%, with the exception of pneumoconiosis attributed to other inorganic dusts (e.g., aluminum, bauxite, beryllium, iron, and tin oxide), which increased significantly (p-value for time trend <0.05). The largest observed decreases in pneumoconiosis deaths were for those associated with coal workers' pneumoconiosis (69.6%) and silicosis (53.0%). Asbestosis was the most frequently reported pneumoconiosis and was associated with working in the construction industry. The ongoing occurrence of deaths associated with pneumoconiosis underscores the importance of occupational dust exposure reduction, early case detection, and continued surveillance to monitor trends.


Asunto(s)
Neumoconiosis/mortalidad , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estados Unidos/epidemiología , Adulto Joven
17.
Med Law Rev ; 28(2): 247-269, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31424540

RESUMEN

There is a growing body of evidence that supports the view that research participants and the public are concerned about commercial access to health data. Evidence also suggests that attitudes are ameliorated when charity organisations are involved and where research promises to deliver 'public benefit'. To a significant extent, therefore, mechanisms that ensure the public benefit are key to sustaining public and participant support for research access to health data. As a regime founded on the concept of public benefit, charity law provides regulatory and governance mechanisms through which the public benefit of a charity is protected and promoted. This article examines the merits of charity law mechanisms and analyses their significance for governance of commercial access to health data for public benefit, using UK Biobank Ltd, a charitable company limited by guarantee, as an example. The article critically analyses three charity law mechanisms that operate to ensure that an organization providing access to data meets its public benefit requirements: charitable purposes; members' and directors' powers and duties; and accountability via the oversight powers of the Charity Commission and charity proceedings in court. The article concludes that there is potential for the charity model to be the benchmark for governing commercial access to health data for public benefit research, but notes the limitations of the model and recommends the appointment of independent data governance committees to further bolster the charity law framework.


Asunto(s)
Acceso a la Información/legislación & jurisprudencia , Bancos de Muestras Biológicas/legislación & jurisprudencia , Bancos de Muestras Biológicas/organización & administración , Organizaciones de Beneficencia/legislación & jurisprudencia , Organizaciones de Beneficencia/organización & administración , Comercio/legislación & jurisprudencia , Difusión de la Información/legislación & jurisprudencia , Acceso a la Información/psicología , Consejo Directivo , Humanos , Responsabilidad Social , Síndicos , Reino Unido
18.
Cancer Res ; 79(21): 5652-5667, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31501192

RESUMEN

MYCN is a major driver for the childhood cancer, neuroblastoma, however, there are no inhibitors of this target. Enhanced MYCN protein stability is a key component of MYCN oncogenesis and is maintained by multiple feedforward expression loops involving MYCN transactivation target genes. Here, we reveal the oncogenic role of a novel MYCN target and binding protein, proliferation-associated 2AG4 (PA2G4). Chromatin immunoprecipitation studies demonstrated that MYCN occupies the PA2G4 gene promoter, stimulating transcription. Direct binding of PA2G4 to MYCN protein blocked proteolysis of MYCN and enhanced colony formation in a MYCN-dependent manner. Using molecular modeling, surface plasmon resonance, and mutagenesis studies, we mapped the MYCN-PA2G4 interaction site to a 14 amino acid MYCN sequence and a surface crevice of PA2G4. Competitive chemical inhibition of the MYCN-PA2G4 protein-protein interface had potent inhibitory effects on neuroblastoma tumorigenesis in vivo. Treated tumors showed reduced levels of both MYCN and PA2G4. Our findings demonstrate a critical role for PA2G4 as a cofactor in MYCN-driven neuroblastoma and highlight competitive inhibition of the PA2G4-MYCN protein binding as a novel therapeutic strategy in the disease. SIGNIFICANCE: Competitive chemical inhibition of the PA2G4-MYCN protein interface provides a basis for drug design of small molecules targeting MYC and MYCN-binding partners in malignancies driven by MYC family oncoproteins.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteína Proto-Oncogénica N-Myc/genética , Proteínas Oncogénicas/genética , Proteínas de Unión al ARN/genética , Transducción de Señal/genética , Animales , Animales Modificados Genéticamente , Carcinogénesis/genética , Línea Celular , Línea Celular Tumoral , Inmunoprecipitación de Cromatina/métodos , Regulación Neoplásica de la Expresión Génica/genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neuroblastoma/genética , Pez Cebra
19.
J Vis Exp ; (149)2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31380850

RESUMEN

Accurate eye movements are crucial for vision, but the development of the ocular motor system, especially the molecular pathways controlling axon guidance, has not been fully elucidated. This is partly due to technical limitations of traditional axon guidance assays. To identify additional axon guidance cues influencing the oculomotor nerve, an ex vivo slice assay to image the oculomotor nerve in real-time as it grows towards the eye was developed. E10.5 IslMN-GFP embryos are used to generate ex vivo slices by embedding them in agarose, slicing on a vibratome, then growing them in a microscope stage-top incubator with time-lapse photomicroscopy for 24-72 h. Control slices recapitulate the in vivo timing of outgrowth of axons from the nucleus to the orbit. Small molecule inhibitors or recombinant proteins can be added to the culture media to assess the role of different axon guidance pathways. This method has the advantages of maintaining more of the local microenvironment through which axons traverse, not axotomizing the growing axons, and assessing the axons at multiple points along their trajectory. It can also identify effects on specific subsets of axons. For example, inhibition of CXCR4 causes axons still within the midbrain to grow dorsally rather than ventrally, but axons that have already exited ventrally are not affected.


Asunto(s)
Músculos Oculomotores/metabolismo , Nervio Oculomotor/crecimiento & desarrollo , Técnicas de Cultivo de Órganos/métodos , Imagen de Lapso de Tiempo/métodos , Animales , Axones , Axotomía , Medios de Cultivo , Movimientos Oculares , Femenino , Proteínas Fluorescentes Verdes , Ratones , Ratones Transgénicos , Músculos Oculomotores/embriología , Músculos Oculomotores/inervación , Nervio Oculomotor/embriología , Órbita/crecimiento & desarrollo , Órbita/inervación , Embarazo , Receptores CXCR4/antagonistas & inhibidores
20.
Nat Commun ; 10(1): 3319, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31346162

RESUMEN

Chromosome 17q21-ter is commonly gained in neuroblastoma, but it is unclear which gene in the region is important for tumorigenesis. The JMJD6 gene at 17q21-ter activates gene transcription. Here we show that JMJD6 forms protein complexes with N-Myc and BRD4, and is important for E2F2, N-Myc and c-Myc transcription. Knocking down JMJD6 reduces neuroblastoma cell proliferation and survival in vitro and tumor progression in mice, and high levels of JMJD6 expression in human neuroblastoma tissues independently predict poor patient prognosis. In addition, JMJD6 gene is associated with transcriptional super-enhancers. Combination therapy with the CDK7/super-enhancer inhibitor THZ1 and the histone deacetylase inhibitor panobinostat synergistically reduces JMJD6, E2F2, N-Myc, c-Myc expression, induces apoptosis in vitro and leads to neuroblastoma tumor regression in mice, which are significantly reversed by forced JMJD6 over-expression. Our findings therefore identify JMJD6 as a neuroblastoma tumorigenesis factor, and the combination therapy as a treatment strategy.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji/metabolismo , Neuroblastoma/tratamiento farmacológico , Receptores de Superficie Celular/metabolismo , Animales , Apoptosis/efectos de los fármacos , Carcinogénesis , Proliferación Celular/efectos de los fármacos , Factor de Transcripción E2F2/genética , Factor de Transcripción E2F2/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Inhibidores de Histona Desacetilasas/administración & dosificación , Humanos , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/fisiopatología , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...